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ABSTRACT

This paper presents the development of operational statistical forecasts of seasonal tropical cyclone (TC)
activity over the western North Pacific (WNP) and the South China Sea (SCS) based on 30 yr of data (1965–
94). Predictors include monthly values of indices representing (a) the El Niño–Southern Oscillation phenomenon,
and (b) the environmental conditions over East Asia and the WNP for the months from April of the previous
year to March of the current year. Trends and short-term oscillations of the TC activity are also incorporated.

The prediction equations are derived from the predictors of individual parameters using the Projection Pursuit
Regression technique, which is a statistical method that reduces high-dimensional data to a lower-dimensional
subspace before the regression is performed. This technique is found to provide explanations of certain nonlinear
variations of the predictands. The predictions from individual parameters are then tested using the jackknife
technique. Those predictions that have correlations (with the observed) significant at the 95% level or higher
are retained. The values of the correlation coefficients are then used as weights in combining the predictions to
form a single forecast of each predictand. The forecasts obtained this way are found to be superior to those
from individual parameters.

The combined forecast equations are then used to predict the TC activity over the WNP and the SCS for
1997. The prediction is for a slightly above-normal activity for the entire WNP but slightly below normal for
the SCS. The former is found to be correct and the latter has the right trend although the activity over the SCS
was far below normal, probably as a result of the El Niño of 1997.

1. Introduction

Tropical cyclone (TC) activity over the western North
Pacific (WNP) has been found to possess variations on
timescales of a few years (Chan 1985, 1995a) to decades
(Chan and Shi 1996). Because these variations have
certain identifiable periods, it should be possible to de-
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velop a statistical forecasting tool to predict the TC
activity for a particular year. Such predictions have been
made with considerable success for Atlantic hurricanes
since 1989 (e.g., Gray et al. 1992, 1993, 1994; Elsner
and Schmertmann 1993; Hess et al. 1995) and for TCs
in the Australian region (Nicholls 1992). However, no
operational scheme yet exists for TCs over the WNP.
This paper presents the results of development of such
a scheme and the forecasts for the 1997 season.

In developing an operational scheme, two major is-
sues have to be considered: (a) the types of data to be
used and whether the data can be available in near-real
time so that a prediction can be made in time, and (b)
the methodology to be adopted in selecting the predic-
tors. The first issue will be discussed in section 2, where
the selection process will be described.

In many statistical predictions, a stepwise multiple
regression is performed between the predictand (here
the number of TCs) and the potential predictors to
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choose the ones that have the largest correlation based
on the least squares deviation (LSD) concept (see Wat-
terson 1996). Recently, Mielke et al. (1996) have shown
that the LSD regression models are generally inferior
to the least absolute deviation (LAD) idea, especially
for small data samples and in the presence of nonrep-
resentative data. In most of the LSD and LAD models,
the regression equation is generally linear. While lin-
earity is a good approximation in many applications,
some variations of the predictand can be nonlinear.
However, performing nonlinear regression in the tra-
ditional way is generally quite complicated. This is es-
pecially so when a large number of potential predictors
needs to be considered, although Elsner and Schmert-
mann (1993) did have some success in predicting At-
lantic hurricane activity using a nonlinear Poisson re-
gression.

A new technique, the projection pursuit (PP) method,
is therefore adopted. First proposed by Friedman and
Tukey (1974), this technique aims to project high-di-
mensional data onto a lower-dimensional (one to two
dimensions) subspace such that the configuration of the
data in the projected subspace can reflect the main struc-
ture and features of the original high-dimensional data
[see Huber (1985) for a detailed description of the con-
cepts involved]. They coined the name ‘‘projection pur-
suit’’ because the technique automatically pursues the
most ‘‘interesting’’ projections. A close analogy of this
technique is the empirical orthogonal function analysis,
which also has a similar objective.

The most important character of PP techniques is ro-
bustness, which enables the removal of the interference
of variates irrelevant to the structure and features of the
data. Chan and Shi (1997) recently demonstrated the
robustness of the PP principal component analysis
(PCA) technique when compared with the traditional
PCA method in representing sea surface temperature
and rainfall in the presence of outliers. The PP methods
can also surmount the serious difficulty caused by any
sparseness of the high-dimensional data. In addition,
although the technique is based on linear projections of
the data, it attempts to identify the nonlinear structures
within the projections. Therefore, to a certain extent,
the PP technique is capable of handling nonlinear prob-
lems (Friedman 1985).

Because of these advantages, the PP regression (PPR)
technique is adopted in this study. A brief description
of the technique is described in section 3. It should be
pointed out that linear regression using the LAD ap-
proach had actually been tested but no significant pre-
dictors could be identified. This is another reason for
adopting the PPR technique, which is applied in section
4 to derive the prediction equations for the TC activity
over the WNP and the South China Sea (SCS). All
equations are tested for their accuracy using the jack-
knife method. These equations are then employed to
predict the number of TCs in 1997, the results of which

are shown in section 5 together with the verifications.
The paper is then summarized in section 6.

2. Predictands and predictors

a. Predictands

The monthly numbers of TCs over the WNP (in-
cluding the SCS) as reported in the annual reports of
the Joint Typhoon Warning Center (JTWC) for the years
1965–94 form the basic dataset for the study. The sam-
ple is further grouped into the following three predic-
tands:

R annual number of TCs (TCA), ‘‘A’’ meaning annual;
R annual number of tropical storms and typhoons

(TSYA); and
R annual number of typhoons (TYA).

Because TC activity over the WNP is mainly con-
centrated in the months of May through December, and
considering that some of the predictors may be param-
eters in the preceding winter season, three more pre-
dictands are defined for the months of May to Decem-
ber:

R number of TCs (TC8), ‘‘8’’ meaning eight months
(May to December);

R number of tropical storms and typhoons (TSY8); and
R number of typhoons (TY8).

Since TCs over the SCS have slightly different in-
terannual variability than the entire WNP (see, e.g.,
Chan 1995b), two other predictands are chosen:

R annual number of TCs (TCS), ‘‘S’’ meaning SCS;
R annual number of tropical storms and typhoons

(TSYS).

Note that the annual number of typhoons over the SCS
is not a predictand because of its relatively small value.
Here the South China Sea covers the area from 08 to
238N and 1008 to 1208E. The numbers for the last two
predictands are found by going through the plotted
tracks for each individual year. For the years 1965–85,
the tracks are from the publication of the Shanghai Ty-
phoon Institute (1990) and the rest from the JTWC re-
ports.

Thus, a total of eight predictands will be considered
in this study. For each predictand, a set of potential
predictors will be examined in applying the PPR tech-
nique.

b. Predictors

In choosing the potential predictors, two factors are
considered. First, the predictor should have a physical
link with the development and/or movement of TCs (the
latter being important for TCs in the SCS). Second, since
the forecast should be made early in the season (at the
latest by April for the May to December predictions to
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be useful), any predictor chosen must be available and
easily accessible no later than April. Based on these two
considerations, three sets of predictors are selected,
which are described as follows.

1) PARAMETERS RELATED TO THE EL NIÑO

PHENOMENON

Many studies in the past have linked the El Niño–
Southern Oscillation (ENSO) phenomenon to TC activ-
ity (Gray 1984; Nicholls 1984; Chan 1985, 1995b; Has-
tings 1990; Solow and Nicholls 1990; Gray and Shaeffer
1991). Indices that can be used as proxies of ENSO and
are easily accessible are those from the Climate Analysis
Center (CAC). They include monthly values from April
of the previous year to March of the current year of the
Southern Oscillation index (SOI), sea surface temper-
ature (SST) anomalies in various equatorial Pacific
regions (NINO112, NINO3, NINO4, and NINO314),
and the west Pacific pattern (WP) index. Thus, a total
of 72 (12 values of each parameter 3 six parameters)
potential predictors is available.

2) PARAMETERS RELATED TO THE LARGE-SCALE

CIRCULATION

Since environmental influences are crucial for the
genesis, intensification, and movement of TCs (e.g.,
Chan and Gray 1982; Gray 1988), parameters describing
the environment associated with TCs may be consid-
ered. However, these parameters are occurring simul-
taneously with the TCs and therefore cannot be used as
predictors. Instead, indices that represent the conditions
in the wintertime prior to the TC season are used. This
is based on the assumption that changes in these con-
ditions are related to subsequent changes during the TC
season so that the indices can be proxies of the sum-
mertime environment. The indices considered include
strength of the subtropical high over the SCS, westward
extension of the 500-hPa subtropical ridge, 500-hPa
height over the Tibetan Plateau, 500-hPa height over
South Asia (representing the strength of the India–Bur-
ma trough), frequency of cold surges over China, and
areal extent of the polar vortex in the Pacific sector. All
these indices are monthly values from April of the pre-
vious year to March of the current year. They are all
available from the National Climate Center of China
(NCC) and should be accessible by April of the current
year. See also Table 2 (section 4) for a more detailed
description of the predictors.

3) CLIMATOLOGY–PERSISTENCE PREDICTORS

Chan and Shi (1996) have shown that annual TC
activity over the WNP has both a long-term trend and
short-term fluctuations with periods of 2 and 7 yr. These
variations can therefore be used as climatology and per-

sistence (CLIPER) predictors for the activity in the com-
ing year.

For each predictand in a given year, 12 predictors of
each parameter (except CLIPER) are available (from
April of the previous year to March of the current year).
The total number of potential predictors is therefore
quite substantial. Because only 30 yr of data are avail-
able, it is not appropriate to include too many predictors
in the prediction equation. This is another reason why
the PPR technique has to be employed to reduce the
dimensionality of the problem.

3. The PP regression technique

Regression is a method for modeling a set of response
variables yi (1 # i # q) as functions of a set of predictor
variables xj (1 # j # p) based on a set of training data.
Often, q 5 1 (i.e., a single response variable). The clas-
sic linear model expresses the ŷi as linear functions of
the predictor variables

p

ŷ (x , · · · , x ) 5 a 1 a x , (1)Oi 1 p i0 i j j
j51

where the values of the aij are estimated by least squares.
Friedman and Stuetzle (1981) suggested an extension

to this basic linear model and termed the resulting tech-
nique projection pursuit regression, or PPR. It has the
form

Mi

Tŷ (x , · · · , x ) 5 f (a x), (2)Oi 1 p im im
m51

where x is the column vector of the predictor variables
(x1, x2, . . . , xp) and is the row vector of the coef-Taim

ficients , j 5 1, 2, . . . , p, for the ith response variable.(j)aim

That is,
p

T ( j )a x 5 a x (3)Oim im j
j51

and f im are single-valued (ridge) functions of a single
variable, with Mi being the number of such functions
(i.e., the number of projections). Therefore, instead of
modeling each response as a linear combination of the
predictor variables (as in linear regression), PPR models
each one as a sum of functions of linear combinations
of the predictor variables. The parameters of the linear
combinations as well as the functions f im are esti-Taim

mated by least squares.
In this study, we generalize the PPR model to make

it more appropriate for multiple-response regression.
This generalization, termed Smooth Multiple Additive
Regression Technique (SMART) by Friedman (1985),
takes the form

Mi

TE[y | x , x , · · · , x ] 5 y 1 b f (a x) (4)Oi 1 2 p i im im im
m51

with y i 5 E[yi], E[ f im] 5 0, E[ ] 5 1 and [ ]2p ( j )2f S aim j51 im
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FIG. 1. Plot of the linear combinations of the first projection of the
NINO4 predictors against the predicted values for the TSY8 predic-
tand. The straight line is the least squares fit.

5 1. The coefficients bim, , and the functions f im areTaim

parameters of the model and are estimated by least
squares. The SMART model in (4) contains the PPR
model in (2) as a special case (Friedman 1985). The
criterion

2q M

TL 5 W E y 2 y 2 b f (a x) (5)O O2 i i i im im m[ ]i51 m51

is minimized with respect to the parameters bim, , andTam

the functions f im. The response weights Wi are specified
by the user. The expected values are computed from the
data as

N N

E[z] 5 w z w , (6)O Ok k k1 2@k51 k51

where z is considered to be a random variable and zk (1
# k # N) are its realized values in the data. The ob-
servation weights wk (1 # k # N), specified by the user,
can be employed to assign different weightings to dif-
ferent observations. They can also be used to implement
iterative reweighting schemes for ‘‘robustification’’ or
approximate maximum likelihood fitting.

It should be pointed out that the criterion in (5) is
sensitive to the relative scale of the response variables
yi, as is true for any distance measure. The influence of
each yi will be proportional to its variance var(yi). If it
is desired that each response variable has the same effect
on the criterion, one can set Wi 5 1/var(yi) or rescale
the responses to have the same variance.

In this study, q is taken as 1, N 5 30 (for 30 yr of
data but becomes 29 in jackknife testing—see section
4), and M is set to 2 (representing two projections, the
maximum being 12, which is the number of potential
predictors for each parameter except for the CLIPER
parameter). Initially, p 5 12 (12 predictors for each
parameter) or 3 (for CLIPER predictors). However, after
the first iteration (see section 4), this number will de-
crease depending on the amount of variance of the pre-
dictand that each of the predictors can explain. Because
only 30 yr of data are available, the most number of
predictors selected (i.e., p) is set to 5.

4. Development of the prediction equations

a. Derivation of the basic regression equations

For each of the eight predictands, the PPR technique
is applied using the 12 predictors of each parameter
listed in section 2, except for the CLIPER parameter in
which only three predictors are available. Those pre-
dictors that can explain the largest amounts of the vari-
ance of the predictand are retained. The prediction equa-
tion is then rederived. The following example illustrates
how this procedure is carried out for the prediction of
TSY8 using the NINO4 parameter.

Applying the PPR technique, it is found that the SST
anomalies within the NINO4 area for the months of

June, July, November, December of the previous year
and January of the current year are significantly cor-
related with TSY8. Then, using only these five predic-
tors, the PPR technique is applied again to search for
two projections. The relationship between the first pro-
jected predictor (z1 5 x) and TSY8 is found to beTa1

basically linear (Fig. 1). However, after the variance of
TSY8 explained by z1 is removed, the residual, g(x) 5
y 2 g1( x), correlates with the second projected pre-Ta1

dictor z2 5 x in a nonlinear way (Fig. 2). This exampleTa2

illustrates that, if the predictand varies nonlinearly with
some of the predictors, such variations may be account-
ed for by projecting the predictors onto a subspace using
the PPR technique. Although such a procedure is not
necessarily the optimal way of selecting the predictors,
it is relatively efficient and capable of identifying some
nonlinear relationships.

This procedure is repeated for all the eight predictands
using each of the potential parameters. That is, each
predictand will have a number of prediction equations,
each containing up to five values (predictors) of a single
parameter. The next step is then to determine which and
how many of these prediction equations should be re-
tained. This is accomplished through the jackknife tech-
nique.

b. Selection of prediction equations using the
jackknife technique

The jackknife technique is a tool to test the usefulness
of a prediction equation when the sample size is not
large enough to permit a separation of the sample into
dependent and independent cases. In this study, the sam-
ple of 30 yr of data is obviously not large. Therefore,
the jackknife technique is applied to each of the pre-
diction equations derived in the previous subsection. See
Miller (1974) for a review of the technique and Elsner
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FIG. 2. Plot of the linear combinations of the second projection of the NINO4 predictors against
the residual from the first solution for the TSY8 predictand. The curved line is the least squares
fit.

TABLE 1. Parameters that are found to be significantly correlated
with each of the eight predictands (** 5 correlation significant at
the 99% level, * 5 correlation significant at the 95% level). See text
for the description of the predictands. Detailed definitions of the
parameters are given in Table 2.

Predictors

Predictand

TCA TSYA TYA TC8 TSY8 TY8 TCS TSYS

SOI
NINO4
WP
HSCS
HWNP

**
*

**
**

**
*

**
* *

**
*

*

**

*
*

*

**
**
*

HPV
HTP
HIB
HC
CLIPER

*
**
**
**

**
**
**
*
*

**
**

**
**
**
*
*

**
**
**

*
**
*

**
*

**

*

**

FIG. 3. Observed vs predicted (using the jackknife technique) num-
ber of tropical storms and typhoons during May to December over
the western North Pacific (TSY8) using the projected NINO4 pre-
dictors.

and Schmertmann (1994) and Chan (1995b) for appli-
cations of this technique in developing prediction equa-
tions. The basic method is also outlined in the appendix
for reference.

Using the prediction of TSY8 with NINO4 predictors
again as an example, this technique produces 30 ‘‘in-
dependent’’ predictions that have a correlation of 0.7
with the observed numbers in the TSY8 dataset (see the
scatterplot in Fig. 3). With 30 yr of data and five pre-
dictors, the limiting values of significant correlations

are 0.46 and 0.36, respectively, at the 99% and 95%
level. Thus, this prediction equation should be retained.

This procedure is repeated for all the prediction equa-
tions. Only those with significant correlations (at the
95% level or above) between the predicted (from the
jackknife technique) and the observed are retained. It
turns out that many of the parameters are common to
the prediction equations, as can be seen from Table 1
(detailed descriptions of the parameters are listed in Ta-
ble 2). Notice that the number of parameters that survive
the jackknife test tends to be smaller for the predictands
that have smaller numbers, probably because of the larg-
er variability.

c. The final prediction equations

The results from the last section suggest that for each
predictand, a number of prediction equations can be
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TABLE 2. Definitions of the parameters listed in Table 1. All
values are monthly means.

Predictor Description Source

SOI Standardized Southern Oscillation
index

NOAA/CACa

NINO4 SST anomalies in the NINO4 re-
gion

NOAA/CAC

WP West Pacific pattern index NOAA/CAC
HSCS Index of the northern extent of

the subtropical high over the
South China Sea (1008–1208E)

NCCb

HWNP Index of the westward extent of
the 5880-m contour of the 500-
hPa subtropical high over the
western North Pacific

NCC

HPV Index of the area of the polar
vortex in the Pacific sector
(1508E–1208W)

NCC

HTP Index of the strength of the 500-
hPa subtropical high over Tibet
(258–358N, 808–1008E)

NCC

HIB Index of the strength of the In-
dia–Burma trough (158–208N,
808–1008E) at 500 hPa

NCC

HC Index of the frequency of cold-air
intrusion into China during
September–December and Janu-
ary–May

NCC

CLIPER Trend and 2- and 7-yr variations,
of the predictand

derived from data

a NOAA/CAC 5 National Oceanic and Atmospheric Administra-
tion/Climate Analysis Center (now the Climate Prediction Center of
the National Centers for Environmental Prediction).

b National Climate Center, China

TABLE 3. Correlations, absolute and rms errors, and the measure of
agreement r of the final predictions (compared with the observed)

for the 30-yr sample.

Predictand Correlation
Absolute

error Rms error
Measure of

agreement (r)

TCA
TSYA
TYA
TC8

0.89
0.86
0.75
0.80

2.3
2.3
2.0
2.6

2.9
2.6
2.5
3.2

0.5620
0.4892
0.4378
0.4668

TSY8
TY8
TCS
TSYS

0.86
0.72
0.77
0.75

1.9
2.1
2.4
1.4

2.4
2.6
2.7
1.9

0.5375
0.3646
0.3402
0.3860

used. The obvious way to combine the predictions is
through a weighted average. The weights to be used
must reflect the ability of the individual equations to
predict what is observed. Therefore, the absolute value
of the correlation coefficient determined in the last sub-
section is chosen as the weight. That is,

K K

Y 5 g y g ,O Ok k k@k51 k51

where Y is the final predicted number, gk the correlation
coefficient between the predicted (from the jackknife
technique) and the observed for the kth parameter, and
yk the number predicted from the prediction equation of
the kth parameter derived from the entire 30 yr of data.
For the prediction of TCA, TSYA, and TC8 (with which
more than five parameters are found to have significant
correlations), only the largest five gk’s are used.

The results of the final predictions show that the cor-
relations between the predicted and observed are very
high (Table 3), ranging from a low of 0.72 (explaining
52% of the variance) to a high of 0.89 (explaining 79%
of the variance). These values are larger than those from
the individual parameters (which generally range be-
tween 0.4 and 0.7). Both the absolute and the root-mean-
square errors are also quite small. Therefore, the skill
of these forecasts should be quite high.

Following Mielke et al. (1996), another measure of
agreement, r, is used to test the usefulness of the final
predictions. This measure is defined as

d
r 5 1 2 ,

md

where
n1

d 5 |y 2 ỹ |O i in i51

and
n n1

m 5 |y 2 ỹ |.O Od i j2n i51 j51

The higher the values of r, the better is the agreement
between the observed and the predicted quantity. Note
that to have a fair comparison between the LAD and
LSD regressions, the exponent of |yi 2 ỹi| and |yi 2 ỹj|
in the above equations is set to 1 instead of 2 as stated
in Mielke et al. (1996). It can be seen from Table 3 that
the value of this measure is, in general, consistent with
the corresponding value of the correlation, with the
highest being around 0.56 and the lowest 0.34. These
values are comparable to those obtained from LAD re-
gressions (e.g., Mielke et al. 1996, 1997). Thus, both
measures indicate the prediction equations should be
able to produce reasonable forecasts.

5. Forecasts and verifications for 1997

Based on the results in the previous section, the final
eight prediction equations are applied to make the pre-
dictions for 1997. The predictions (Table 4) suggest that
the 1997 season is close to normal with slightly above-
normal number of TCs over the entire WNP but slightly
below-normal numbers within the SCS.

The verifications shown in Table 4 are based on the
warnings issued by the Joint Typhoon Warning Center
in Guam, which indicate that the prediction for an
above-normal activity for the entire WNP is verified,
with the number of tropical storms and typhoons being
even higher than predicted. However, although the pre-
dicted trend for a below-normal activity over the SCS
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TABLE 4. Forecasts and verifications for 1997. The climatology
(1965–94) is also included for comparison.

Predictand Predicted no. Observed no. Climatology

TCA
TSYA
TYA
TC8

33
30
19
30

33
31
21
30

31
27
17
28

TSY8
TY8
TCS
TSYS

27
17
12

9

30
20

7
7

25
16
13
11

is correct, the observed numbers are even lower.
Throughout 1997, no TC crossed the Philippines into
the SCS, which is very unusual (see the climatology in
Xue and Neumann 1984). Because the number of TCs
in the SCS is the sum of those that developed within
the basin and those entering the SCS from east of the
Philippines, the absence of the latter resulted in the far-
below-normal activity. While a detailed study has yet
to be taken, preliminary analyses suggest that such an
absence is probably related to the strong El Niño of
1997. Because the latest predictors used are those in
March, when this warm event was not yet apparent, the
predictions were not able to identify this signal. Nev-
ertheless, the overall prediction for 1997 should be con-
sidered to be rather successful.

6. Summary and discussion

a. Summary of results

This paper has presented a methodology to develop
a set of prediction equations for TC activity over the
western North Pacific and the South China Sea and to
use these equations to predict such activity for 1997.
The technique, called the projection pursuit regression
(PPR) technique, projects a set of high-dimensional data
(in this case, the predictors) onto a lower-dimensional
subspace and then uses the projected data to develop
the prediction equations. It has been demonstrated that
such a technique is capable of identifying some nonlin-
ear variations of TC activity with some of the predictors.
This appears to lead to better predictions compared with
the traditional linear regression techniques. In fact, some
preliminary comparisons have been made between var-
ious techniques and PPR has been found to be superior.
These results will be reported in a separate paper.

Various parameters that should be related to TC de-
velopment and/or movement and available prior to the
main TC season are identified. Individual monthly val-
ues of these parameters are then correlated with the
number of TCs, tropical storms, and typhoons using the
PPR technique. Those that have the highest correlations
for each parameter are then used to develop the pre-
diction equations. For a given predictand, the predic-
tions from various predictors are combined using a
weighted-average method. The weights are determined

by the correlations of the observed numbers with in-
dividual predictions made from the jackknife technique.
The combined forecast is found to have a much higher
correlation with the observed than the individual pre-
dictions.

Based on the equations derived from the weighted-
average method, the number of TCs over the WNP for
1997 is predicted to be slightly above normal while that
over the SCS should be slightly below normal. The
former prediction is found to be correct but the latter,
although giving the correct trend, predicted more than
what was observed. This overprediction may be a result
of the El Niño of 1997 when no TC crossed the Phil-
ippines into the SCS.

b. Discussion

This study represents the first attempt to make an
operational prediction of TC activity over the western
North Pacific and the South China Sea. While some
predictors have also been used for predictions in the
Atlantic and Australian regions (e.g., SST anomalies
over the equatorial Pacific region representing ENSO),
many factors are included for the first time. These in-
clude environmental conditions in the wintertime as well
as the climatology and persistence components. Except
for the latter two, all other factors are monthly values
that can be from April of the previous year to March
of the current year. Although the results suggest that
many of them correlate significantly with TC activity,
the physical reasoning remains unclear. The next step
of the study will attempt to explain why these predictors
give such significant correlations. This type of under-
standing is crucial in establishing confidence in the fore-
casts that they are not due to random chance but causali-
ty actually exists. Further, evaluations of the forecasts
will also be easier, which should lead to better forecasts
in the future.

The PPR technique adopted in this study has been
demonstrated to be a viable, and probably superior,
method of deriving prediction equations from a large
set of independent variables. Proof of its superiority
over other linear regression techniques will be the focus
of a future paper.

To summarize, this study has, for the first time, de-
veloped an operational forecast for TC activity over the
WNP and the SCS and made a prediction for the activity
in 1997. The verifications suggest that perhaps a later
update to take into account events that occur after March
of the current year may be necessary, as is done by Gray
et al. (1993) for the prediction of Atlantic hurricanes.
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APPENDIX

The Jackknife Method

To test the usefulness of a prediction equation derived
from a sample of limited size, the ‘‘jackknife method’’
is often used to simulate an independent sample. While
various versions of this method have been used, the
simplest procedure as described below is adopted in this
study.

1) Derive the prediction equation based on all except
one data point (say, in this paper, the number of TCs
in year 1).

2) Use the derived equation to predict the number of
TCs of year 1 and calculate the error.

3) Repeat (1) and (2) but now include year 1 and ex-
clude year 2.

4) Repeat (3) until all the years have been excluded
once.

With this procedure, each of the predictions can be
considered to be independent. If the prediction errors
using this sample are reasonable, it may be concluded
that the prediction equation using the dependent sample
is useful and can be used for future predictions.
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